

Operating manual

ME12

Remotely configurable digital pressure transducer

Masthead

Manufacturer: FISCHER Mess- und Regeltechnik GmbH

Bielefelderstr. 37a D-32107 Bad Salzuflen Telephone: +49 5222 974 0 Telefax: +49 5222 7170

eMail: <u>info@fischermesstechnik.de</u> web: <u>www.fischermesstechnik.de</u>

Technical editorial team: Documentation representative: T. Malischewski

Technical editor: R. Kleemann

All rights, also those to the translation, reserved. No part of this document may be reproduced or processed, duplicated or distributed using electronic systems or any other form (print, photocopy, microfilm or another process) without the written consent of the company FISCHER Mess- und Regeltechnik GmbH, Bad Salzuflen.

Reproduction for internal use is expressly allowed.

Brand names and procedures are used for information purposes only and do not take the respective patent situation into account. Great care was taken when compiling the texts and illustrations; Nevertheless, errors cannot be ruled out. The company FISCHER Mess- und Regeltechnik GmbH will not accept any legal responsibility or liability for this.

Subject to technical amendments.

© FISCHER Mess- und Regeltechnik GmbH 2015

Version history

Rev. ST4-A 09/15	Version 1 (first edition)
Rev. ST4-B 07/18	Version 2 (correction)
Rev. ST4-C 12/18	Version 3 (correction accessories, connection cables)

2/28

Table of Content

1	Safe	ety guidelines	4
	1.1	General	4
	1.2	Personnel Qualification	4
	1.3	Risks due to Non-Observance of Safety Instructions	4
	1.4	Safety Instructions for the Operating Company and the Operator	4
	1.5	Unauthorised Modification	
	1.6	Inadmissible Modes of Operation	4
	1.7	Safe working practices for maintenance and installation work	5
	1.8	Pictogram explanation	5
2	Pro	duct and functional description	6
	2.1	Product overview	6
	2.2	Use as intended	7
	2.3	Function diagram	7
	2.4	Design and mode of operation	8
3	Inst	allation and assembly	9
	3.1	Generalities	9
	3.2	Process connection	9
	3.3	Electrical connections	11
	3.4	Commissioning	14
	3.5	Servicing	14
4	Tec	hnical data	15
	4.1	Generalities	15
	4.2	Input variables	15
	4.3	Output parameters	16
	4.4	Measurement accuracy	16
	4.5	Auxiliary energy	16
	4.6	Application conditions	17
	4.7	Parameters	17
	4.8	Construction design	18
5	Ord	er Codes	22
	5.1	Accessories	24
6	Atta	chments	25

1 Safety guidelines

1.1 General

This operating manual is an integral part of the product and therefore needs to be kept close to the instrument in a place that is accessible at all times to the responsible personnel.

The following sections, in particular instructions about the assembly, commissioning and maintenance, contain important information, non-observance of which could pose a threat to humans, animals, the environment and property.

The instrument described in these operating instructions is designed and manufactured in line with the state of the art and good engineering practice.

1.2 Personnel Qualification

The instrument may only be installed and commissioned by specialized personnel familiar with the installation, commissioning and operation of this product.

Specialized personnel are persons who can assess the work they have been assigned and recognize potential dangers by virtue of their specialized training, their skills and experience and their knowledge of the pertinent standards.

1.3 Risks due to Non-Observance of Safety Instructions

Non-observance of these safety instructions, the intended use of the device or the limit values given in the technical specifications can be hazardous or cause harm to persons, the environment or the plant itself.

The supplier of the equipment will not be liable for damage claims if this should happen.

1.4 Safety Instructions for the Operating Company and the Operator

The safety instructions governing correct operation of the instrument must be observed. The operating company must make them available to the installation, maintenance, inspection and operating personnel.

Dangers arising from electrical components, energy discharged by the medium, escaping medium and incorrect installation of the device must be eliminated. See the information in the applicable national and international regulations.

Please observe the information about certification and approvals in the Technical Data section.

1.5 Unauthorised Modification

Modifications of or other technical alterations to the instrument by the customer are not permitted. This also applies to replacement parts. Only the manufacturer is authorised to make any modifications or changes.

1.6 Inadmissible Modes of Operation

The operational safety of this instrument can only be guaranteed if it is used as intended. The instrument model must be suitable for the medium used in the system. The limit values given in the technical data may not be exceeded.

The manufacturer is not liable for damage resulting from improper or incorrect use.

1.7 Safe working practices for maintenance and installation work

The safety instructions given in this operating manual, any nationally applicable regulations on accident prevention and any of the operating company's internal work, operating and safety guidelines must be observed.

The operating company is responsible for ensuring that all required maintenance, inspection and installation work is carried out by qualified specialized personnel.

1.8 Pictogram explanation

▲ DANGER

Type and source of danger

This indicates a **direct** dangerous situation that could lead to death or **serious injury** (highest danger level).

a) Avoid danger by observing the valid safety regulations.

⚠ WARNING

Type and source of danger

This indicates a **potentially** dangerous situation that could lead to death or **serious injury** (medium danger level).

a) Avoid danger by observing the valid safety regulations.

A CAUTION

Type and source of danger

This indicates a **potentially** dangerous situation that could lead to slight or serious injury, damage or **environmental pollution** (low danger level).

a) Avoid danger by observing the valid safety regulations.

NOTICE

Note / advice

This indicates useful information of advice for efficient and smooth operation.

BA_EN_ME12 5 / 28

2 Product and functional description

2.1 Product overview

The following provide an overview of the possible connectors and process connections. The code stated corresponds to the respective code in the order code.

Electrical plug

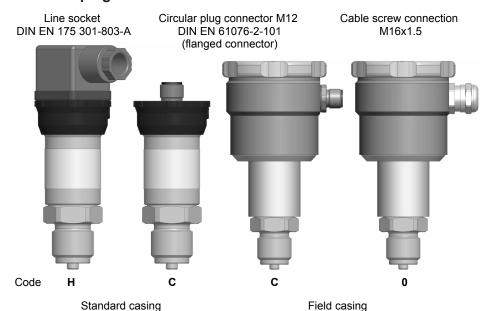
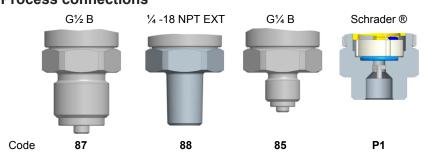



Fig. 1: Electrical plug

Process connections

Near flush-mounted front sensor

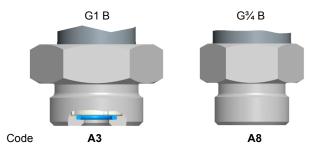


Fig. 2: Process connections

2.1.1 Type plate

A 3-line version with an M12 circulator plug connectors has been selected as an example for the information on the type plate.

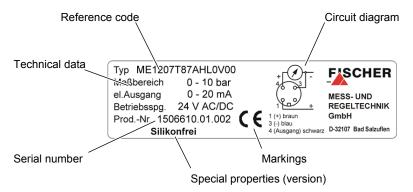


Fig. 3: Type plate

2.2 Use as intended

The ME12 is a pressure transmitter with a ceramic measuring cell for over-pressure and under-pressure and can be used for both relative and also absolute pressure measurements. The pressure transmitter can be used with non-aggressive liquid and gaseous media. Please see the technical data for the respective measuring ranges.

NOTICE

Soiled or aggressive media

Please contact the manufacturer before using this unit with dirty or aggressive media because the unit needs to be adapted for the specific customer in terms of the parts that come into contact with the media.

The device may only be used for the purpose stipulated by the manufacturer.

2.3 Function diagram

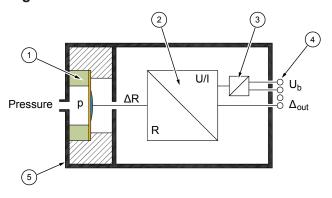


Fig. 4: Function diagram

Process connection

1 Ceramic sensor2 Electronics3 Auxiliary energy4 Electrical connection

BA_EN_ME12 7 / 28

2.4 Design and mode of operation

The pressure sensor work on the thick layer technology DMS principle. The measured pressure acts directly onto a ceramic membrane that deforms when under pressure. This changes the resistance of the attached DMS bridge. Electronics integrated into the device convert this bridge signal into an electronic output signal.

Every pressure transmitter is programmed according to the code in the order code on delivery. Also, the electrical connections can be used to configure the pressure transmitter, adapting it ideally to suit the process conditions. You will need a Transmitter PC Interface available as an accessory.

3 Installation and assembly

3.1 Generalities

The instrument may only be installed and commissioned by specialized personnel familiar with the installation, commissioning and operation of this product.

Specialized personnel are persons who can assess the work they have been assigned and recognize potential dangers by virtue of their specialized training, their skills and experience and their knowledge of the pertinent standards.

⚠ WARNING

Mounting pressure transmitters

During assembly, observe the respective national and international guidelines and safety regulations.

Only mount the unit to systems that are depressurized. Only ever operate the unit within the permitted measuring range or below the maximum overload.

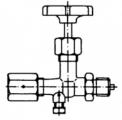


Fig. 5: Shutoff valve.

The device is set ex-works for vertical installation, however any installation position is possible.

To guarantee safe working conditions during installation and maintenance, suitable stop valves must be fitted in the system (see accessories). By means of the manometer shutoff, the unit

- Can be depressurized or taken out of operation.
- Be disconnected from the power supply within the applicable system for repairs or inspections.

3.2 Process connection

- By authorized and qualified specialized personnel only.
- The pipes need to be depressurized when the instrument is being connected.
- Appropriate steps must be taken to protect the device from pressure surges.
- · Check that the device is suitable for the medium being measured.
- Maximum pressures must be observed (cf. Tech. data)

MARNING

Earth connection via the system earth

During assembly, ensure that the earth connection between the unit and the system earth is ensured. The connection to the system earth is realised via the process connection. Therefore, never use an insulated Teflon tape or similar. Design the process connection acc. to EN 837 and use a suitable flat seal.

BA_EN_ME12 9 / 28

3.2.1 Measuring lines that need to be connected

The following points need to be observed when connecting the pressure line:

- To ensure there is no influence on the measured values, severe bends and coils in the wire should be avoided.
- To prevent deposits, there should be a continuous incline or drop of at least 8%.
- · When measuring steam pressure, a water bag-forming loop must be provided due to the temperature (see accessories).

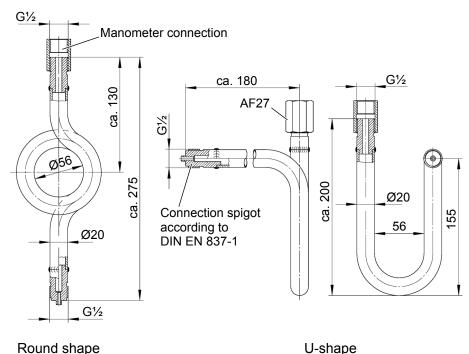


Fig. 6: Siphon MZ1###

U-shape

- The transmitter must be positioned below the measuring point for liquid measurements. Vent the pressure line before commissioning.
- The transmitter must be positioned above the measuring point for gas measurements.

3.2.2 Pressure surge absorption

Pulsating pressure on the system side can lead to functional problems. We recommend installing a damping element in the pressure connection lines as a protective measure.

a) Capillary throttle

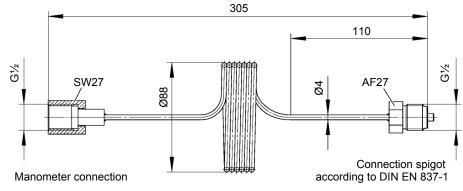


Fig. 7: Capillary throttle MZ400#

b) Settable damping reactor

In operating mode, the damping throttle must be set so that the output signal follows the pressure changes with a delay.

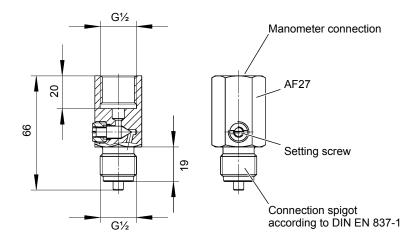


Fig. 8: Damping reactor MZ410#

3.3 Electrical connections

- By authorized and qualified specialized personnel only.
- When connecting the unit, the national and international electro-technical regulations must be observed.
- Disconnect the system from the mains, before electrically connecting the device.
- · Install the consumer-adapted fuses.
- Do not connect the connector if strained.

a) 2-wire connection

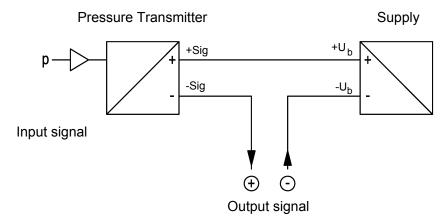


Fig. 9: 2L Circuitry

BA_EN_ME12 11 / 28

b) Three-wire connection

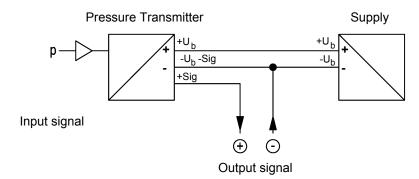


Fig. 10: 3L Circuitry

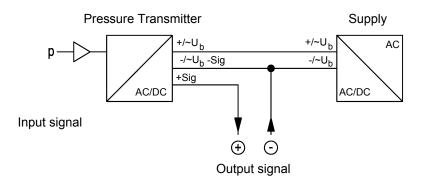


Fig. 11: 3L circuitry AC

3.3.1 Standardised plug DIN EN 175 301-803-A

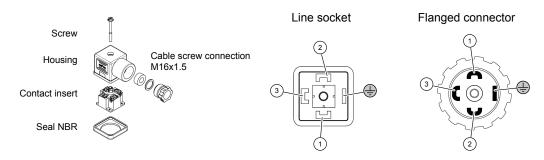


Fig. 12: Line socket DIN EN 175 301-803-A

Terminal	Signal name	DC		Cable colour
1	Supply /Output	$+U_b$	+Sig	red
2	Supply /Output	-U _b	-Sig	blue
3	n.c.			
	n.c.			

Tab. 1: 2-wire connection 4 ... 20 mA

Terminal	Signal name	AC	DC		Cable colour
1	Output			+Sig	Black
2	Supply /Output	~U _b	$-U_b$	-Sig	blue
3	Supply	~U _b	$+U_b$		red
	n.c.				

Tab. 2: 3-wire connection 0 ... 10V

The earth connection in the standardized plug is not connected.

3.3.2 M12 flanged connector DIN EN 61076-2-101

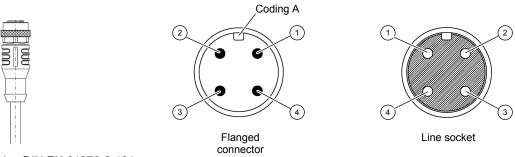


Fig. 13: M12 plug DIN EN 61076-2-101

Pin	Signal name	DC		Cable colour
1	Supply /Output	+U _b	+Sig	brown
2	n.c.			
3	Supply /Output	-U _b	-Sig	blue
4	n.c.			

Tab. 3: 2-wire connection 4 ... 20 mA

Pin	Signal name	AC	DC		Cable colour
1	Supply	~U _b	+U _b		brown
2	n.c.				
3	Supply /Output	~U _b	-U _b	-Sig	blue
4	Output			+Sig	Black

Tab. 4: 3-wire connection 0 ... 10V

3.3.3 Cable connection (field casing)

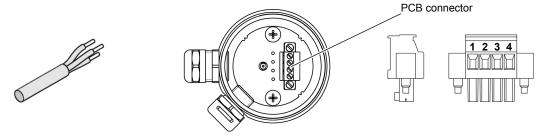


Fig. 14: Cable connection (field casing)

Pin	Signal name	DC		Cable colour
1	Supply /Output	+U _b	+Sig	brown
2	n.c.			
3	Supply /Output	$-U_b$	-Sig	blue
4	n.c.			

Tab. 5: 2-wire connection 4 ... 20 mA

Pin	Signal name	AC	DC		Cable colour
1	Supply	~U _b	+U _b		brown
2	Output			+Sig	white
3	Supply /Output	~U _b	-U _b	-Sig	blue
4	n.c.				

Tab. 6: 3-wire connection 0 ... 10V

BA_EN_ME12 13 / 28

3.4 Commissioning

All electrical supply, operating and measuring lines and the pressure connections must have been correctly installed before commissioning. All supply lines are arranged so that there are no mechanical forces acting on the device.

- If liquid measuring media are used the pressure connection lines must be vented, as liquid columns of different heights in the pipes can cause measuring errors. The instrument must be protected against frost, if water is used as a measuring medium.
- Appropriate shutoff valves must be provided to ensure safety during installation, maintenance and inspection

3.5 Servicing

3.5.1 Maintenance

The instrument is maintenance-free. We recommend the following regular inspection to guarantee reliable operation and a long service life:

- Check the function in combination with downstream components.
- · Check the leak-tightness of the pressure connection lines.
- · Check the electrical connections.

The exact test cycles need to be adapted to the operating and environmental conditions. In combination with other devices, the operating instructions for the other devices also need to be observed.

3.5.2 Transport

The measuring device must be protected against impacts. It should be transported in the original packaging or a suitable transport container.

3.5.3 Service

All defective or faulty devices should be sent directly to our repair department. Please coordinate all shipments with our sales department.

⚠ WARNING

Process media residues

Process media residues in and on dismantled devices can be a hazard to people, animals and the environment. Take adequate preventive measures. If required, the devices must be cleaned thoroughly.

Return the device in the original packaging or a suitable transport container.

3.5.4 Accessories

- Prefabricated M12 connection lines (see Order Codes).
- Siphons MZ1###
- · Capillary throttle coil MZ400#
- Settable damping reactor MZ410#
- Manometer shutoff valves MZ5###, MZ6###

Please see here the data sheet MZ measuring devices accessories. Here you will find more detailed information about the technical data and the order codes of the accessory parts MZ.

3.5.5 Disposal

Please help to protect the environment by always disposing of the work pieces and packaging materials in compliance with the valid national waste and recycling guidelines or reuse them.

14 / 28

4 Technical data

4.1 Generalities

Reference conditions (acc. to IEC 61298-1)					
Temperature error	+15 +25 °C				
Relative humidity	45 75 %				
Air pressure	86 106 kPa	860 1060 mbar			
Auxiliary energy	24 V DC				
Installation position	User-defined				

4.2 Input variables

Measuring variable Relative pressure

Pressure in non-aggressive liquid and gaseous media.

Measuring range	Pressure safety		Characteristic atio	
	Overpressure	Bursting pres- sure	Option	Standard
0+0.6 bar	4 bar	7 bar		1.0 % FS
0+1 bar	4 bar	7 bar	0.5%FS	1.0 % FS
0+1.6 bar	4 bar	7 bar	0.5%FS	1.0 % FS
0+2.5 bar	10 bar	15 bar	0.5%FS	1.0 % FS
0+4 bar	10 bar	15 bar	0.5%FS	1.0 % FS
0+6 bar	20 bar	35 bar	0.5%FS	1.0 % FS
0+10 bar	40 bar	70 bar	0.5%FS	1.0 % FS
0+16 bar	40 bar	70 bar	0.5%FS	1.0 % FS
0+25 bar	100 bar	150 bar		1.0 % FS
0+40 bar	100 bar	150 bar		1.0 % FS
0+60 bar	200 bar	250 bar		1.0 % FS

Absolute pressure

Measuring range	Pressure safety		Characteristic atio	
	Overpressure	Bursting pres- sure	Option	Standard
0+1 bar	4 bar	7 bar	0.5%FS	1.0 % FS
0+1.6 bar	4 bar	7 bar	0.5%FS	1.0 % FS
0+2.5 bar	10 bar	15 bar	0.5%FS	1.0 % FS
0+4 bar	10 bar	15 bar	0.5%FS	1.0 % FS
0+6 bar	10 bar	15 bar	0.5%FS	1.0 % FS
0+10 bar	20 bar	35 bar	0.5%FS	1.0 % FS
0+16 bar	20 bar	35 bar	0.5%FS	1.0 % FS

BA_EN_ME12 15 / 28

Vacuum and ± measuring ranges

Measuring range	Pressure safety		Characteristic atio	
	Overpressure	Bursting pres- sure	Option	Standard
01 bar	4 bar	7 bar		1.0 % FS
-10 bar	4 bar	7 bar		1.0 % FS
-1+0.6 bar	4 bar	7 bar		1.0 % FS
-1+1.5 bar	4 bar	7 bar		1.0 % FS
-1+3 bar	10 bar	15 bar		1.0 % FS
-1+5 bar	20 bar	35 bar		1.0 % FS
-1+9 bar	40 bar	70 bar		1.0 % FS
-1+15 bar	40 bar	70 bar		1.0 % FS
-1+24 bar	100 bar	150 bar		1.0 % FS

4.3 Output parameters

Voltage output

		3-Conductor
Output range		0 10 V DC
Limits		approx. 10.5 V DC
Apparent ohmic resistance	15 V \leq U _b \leq 20 V 20 V \leq U _b \leq 30 V	≥ 5 kΩ ≥ 2 kΩ

Current output

	2-Conductor	3-Conductor
Output range	4 20 mA	0 20 mA 4 20 mA
Limits	ca. 26 mA	ca. 23 mA
Apparent ohmic resistance	(U _b -6V)/0.02A	$(U_b-10V)/0.02A + 300\Omega$

4.4 Measurement accuracy

Non-linearity	Maximum	0.5 % FS
	Typical	0.2 % FS
Hysteresis	Maximum	0.5 % FS
	Typical	0.2 % FS
Characteristic curve deviation 2)	Standard	1.0 %
	Option 1)	0.5 %
Temperature drift	Zero point	0.07 % FS/K
	Measuring range	0.05 % FS/K

¹⁾ only possible for certain measuring ranges ²⁾ incl. non-linearity and hysteresis

4.5 Auxiliary energy

Voltage output

	3-Conductor
Rated Voltage	24 V AC/DC
Admissible operating voltage	15 30 V AC/DC
Power consumption	≤ 1 W (VA)

Current output

	2-Conductor	3-Conductor
Rated Voltage	24 V DC	24 V AC/DC
Admissible operating voltage	6 30 V DC	15 30 V AC/DC
Power consumption	≤ 1 W	≤ 1.5 W (VA)

4.6 Application conditions

Ambient temperature range	-10 °C +70 °C
Storage temperature range	-20 °C +85°C
Medium temperature range	-10 °C +85 °C
EMV	EN 61326-1:2013 EN 61326-2-3:2013
RoHS	EN 50581:2012
Protection type	IP 65 acc. to EN 60529

Materials of the parts that come into contact with the surroundings		
Housing	CrNi Steel 1.4305	
Device plug screw lid	Polypropylene, black	
Device plug	Polyamide, brass, zinc	
Cable socket	Polyamide, polycarbonate, brass, zinc	

Materials of the parts that come into contact with the measuring medium			
Process connection	CrNi St	eel 1.4404	
Sensor membrane	Cerami	c Al ₂ O ₃	
Seal 1)	FKM	Fluorinated rubber, Viton®	
	CR	Chloroprene rubber, Neopren®	
	EPDM	Ethylene propylene diene rubber	
	H-NBR	Hydrogenated acrylonitrile butadiene rubber	
	FFPM	Perfluorinated rubber, Kalrez®	

¹⁾ see order code

4.7 Parameters

The ME12 pressure transmitter is fully configured on delivery, however it can also be remotely configured on site. A PC, an interface, which is available as an accessory and the PC software **transmitter programmer** are required for configuration.

- The EU13 with a USB interface is used for pressure transmitters with 2-line connections.
- The EU03 with an RS 232 interface is used for pressure transmitters with 3line connections. Every device is delivered with an RS232/USB adapter to ensure that the interface can be operated on the USB interface.

The following parameters can be set

Characteristic curve	Increasing / decreasing
Attenuation	0 200 s
Offset correction	±25 %FS
Margin correction	±25 %FS

Signal limits	Current output (settable)	Voltage output (not settable)
Upper limit	3.5 22.5 mA	approx. 10.5 V
Lower limit	3.5 22.5 mA	0V
Error signal	3.5 22.5 mA	

BA_EN_ME12 17 / 28

4.8 Construction design

4.8.1 Dimensional picture

All dimensions in mm unless otherwise stated

Standard casing

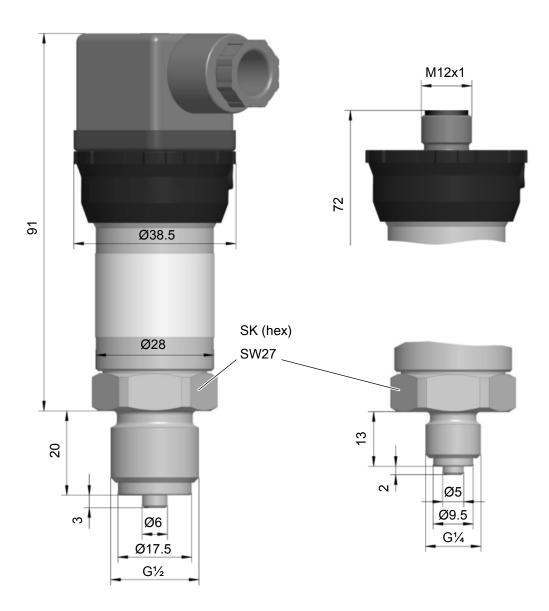
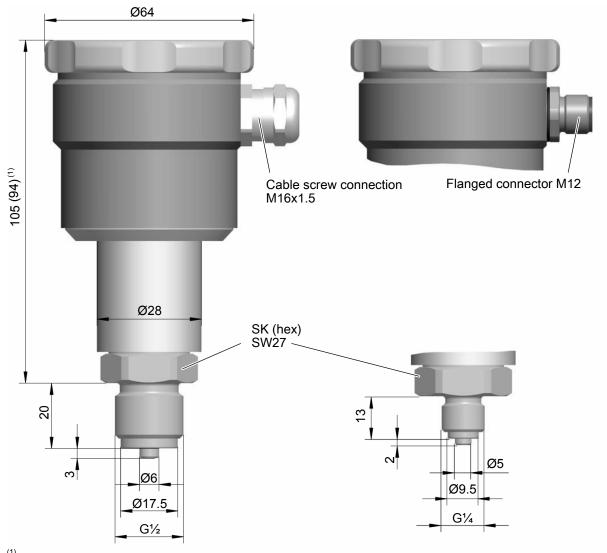



Fig. 15: Standard casing dimensional drawing

Field casing

⁽¹⁾ for near flush-mounted front sensor:

Fig. 16: Field casing dimensional drawing

Other process connections

near flush-mounted front sensor 1/4-18 NPT EXT Schrader ® G³¼ B SW32 SW41 SW41 A-18 NPT SCHRAMER SW32 FINAL SW41 SW4

Fig. 17: Process connections dimensional drawing

BA_EN_ME12 19 / 28

4.8.2 Process connection

Port		Material
G½ B	Connection shanks with external thread	1.4404
G1⁄4 B	Connection shanks with external thread	1.4404
1/4-18 NPT EXT	Connection shanks with external thread	1.4404
7/16 UNF	Connection with inner thread for the Schrader®- screw connection >	1.4404
G¾ B	Connection shanks with external thread near flush-mounted front sensor	1.4404
G1 B	Connection shanks with external thread near flush-mounted front sensor	1.4404

4.8.3 Electrical connection

Standard casing

Unit connector and cable socket DIN EN 175 301-803 Form A, 4 pin

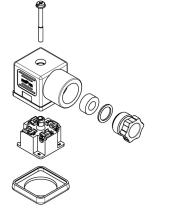
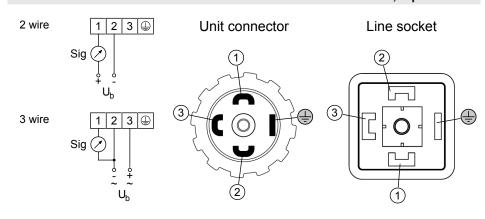
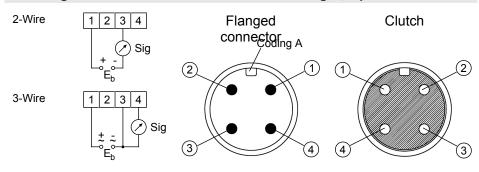




Fig. 18: Line socket DIN EN 175 301-803A

M12 flanged connector DIN EN 61076-2-101 coding A, 4 pin

Field casing

Cable connection

Fig. 20: Cable connection

M12 flanged connector DIN EN61076-2-101 coding A, 4 pin

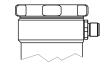
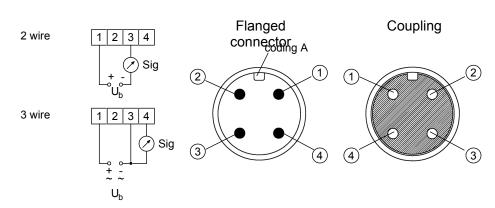
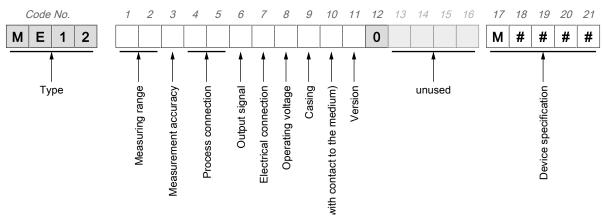




Fig. 21: M12 connection

BA_EN_ME12 21 / 28

5 Order Codes

[1.2]	Measuring range	Abs.	Rel.
01	00.6 bar		•
02	01 bar	•	•
03	01.6 bar	•	•
04	02.5 bar	•	•
05	04 bar	•	•
06	06 bar	•	•
07	010 bar	•	•
80	016 bar	•	•
09	025 bar		•
10	040 bar		•
11	060 bar		•
31	-10 bar		•
32	-10.6 bar		•
33	-11.5 bar		•
34	-13 bar		•
35	-15 bar		•
36	-19 bar		•
37	-115 bar		•
38	-124 bar		•
39	01 bar		•

Abs. = Absolute pressure measurement Rel. = relative pressure measurement.

[3]	Measurement accuracy
M	1.0 % Characteristic curve deviation during relative pressure measurement
0	0.5 % Characteristic curve deviation during relative pressure measurement
S	1.0 % characteristic curve deviation for absolute pressure measurement
Т	0.5 % characteristic curve deviation for absolute pressure measurement

[4.5]	Process connection	Material
85	Connection shanks with external thread G1/4 B	
87	Connection shanks with external thread G½ B	
88	Connecting port with outer thread ¼ -18 NPT EXT	1.4404
P1	Schrader® screw connection inner thread 7/16 UNF	
A3	Near flush-mounted front sensor outer thread G1 B	
A8	Near flush-mounted front sensor outer thread G3/4 B	

[6]	Output signal	
Α	0 20 mA	3-wire version
Р	4 20 mA	3-wire version
С	0 10 V	3-wire version
D	1 5 V	3-wire version
В	4 20 mA	2-wire version

[7]	Electrical connection	Standard casing	Field casing
Н	Cable socket DIN EN 175 301-803	yes	no
M	M12 coupling device DIN EN 61076-2-101	yes	yes
0	Cable connection	no	yes

[8]	Operating voltage		
9	24 V DC	2-wire version	
L	24 V AC/DC	3-wire version	

[9]] Casing	Protection class (DIN EN 60 529)	
0	Standard casing		
V	Standard casing, cast version	IP65	
F	Field casing, cast version		

[10]	Seal (with	contact to medium)
V	FKM	Fluororubber, Viton®
С	CR	Chloroprene rubber (Neopren®)
Е	EPDM	Ethylene propylene diene rubber
Н	H-NBR	Hydrogenated acrylonitrile butadiene rubber
K	FFPM	Perfluorinated rubber (Kalrez®)

[11]	Version		
0	Standard		
3	Suitable for O ₂ measurement	(only with FKM seal)	
Α	Silicone-free		

BA_EN_ME12 23 / 28

5.1 Accessories

Order no.	Planned measures	No. of Poles	Length
06401993	PUR cable with M12-coupling	4-pin	2m
06401994	PUR cable with M12-coupling	4-pin	5m
06401563	PUR cable with M12-coupling	4-pin	7m
06401572	PUR cable with M12-coupling	4-pin	10m
MZ1###	Siphons		
MZ400#	Capillary throttle coil		
MZ410#	Settable damping reactor		
MZ5###	Manometer shutoff valve acc. to DIN 16270/16	271	
MZ6###	Manometer shutoff valve acc. to DIN 16272		
EU03	3-wire transmitter PC Interface incl. PC software	re	
EU13	2-wire transmitter PC Interface incl. PC software	re	

A data sheet is available on our website $\underline{\text{www.fischermesstechnik.de}}$ or on request.

6 Attachments

CE

EU Declaration of Conformity

(Translation)

For the product described as follows

Type designation ME12

it is hereby declared that it corresponds with the basic requirements specified in the following designated directives:

2014/30/EU EMC Directive
2011/65/EU RoHS Directive

The products were tested in compliance with the following standards.

Electromagnetic compatibility (EMC)

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements -

Part 1: General requirements

EN 61326-2-3:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements -

Part 2-3: Particular requirements - Test configuration, operational conditions and performance

criteria for transducers with integrated or remote signal conditioning

RoHS

EN 50581:2012 Technical documentation for the assessment of electrical and electronic products with respect to

the restriction of hazardous substances

Also they were subjected to the conformity assessment procedure "Internal production control".

The object of the declaration described above is in conformity with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Sole responsibility for the issue of this declaration of conformity in relation to fulfilment of the fundamental requirements and the production of the technical documents is with the manufacturer.

Manufacturer FISCHER Mess- und Regeltechnik GmbH

Bielefelder Str. 37a

32107 Bad Salzuflen, Germany

Tel. +49 5222 974 0

Documentation representative

Mr. Torsten Malischewski

B.Sc

Development department

The devices bear the following marking:

 ϵ

Bad Salzuflen, 10 July 2018 G. Gödde Managing director

Seite 1 von 1

Fig. 22: CE_DE_ME12

BA_EN_ME12 25 / 28

BA_EN_ME12 27 / 28